An AML1-ETO/miR-29b-1 regulatory circuit modulates phenotypic properties of acute myeloid leukemia cells

نویسندگان

  • Sayyed K. Zaidi
  • Andrew W. Perez
  • Elizabeth S. White
  • Jane B. Lian
  • Janet L. Stein
  • Gary S. Stein
چکیده

Acute myeloid leukemia (AML) is characterized by an aggressive clinical course and frequent cytogenetic abnormalities that include specific chromosomal translocations. The 8;21 chromosomal rearrangement disrupts the key hematopoietic RUNX1 transcription factor, and contributes to leukemia through recruitment of co-repressor complexes to RUNX1 target genes, altered subnuclear localization, and deregulation of the myeloid gene regulatory program. However, a role of non-coding microRNAs (miRs) in t(8;21)-mediated leukemogenesis is minimally understood. We present evidence of an interplay between the tumor suppressor miR-29b-1 and the AML1-ETO (also designated RUNX1-RUNX1T1) oncogene that is encoded by the t(8;21). We find that AML1-ETO and corepressor NCoR co-occupy the miR-29a/b-1 locus and downregulate its expression in leukemia cells. Conversely, re-introduction of miR-29b-1 in leukemia cells expressing AML1-ETO causes significant downregulation at the protein level through direct targeting of the 3' untranslated region of the chimeric transcript. Restoration of miR-29b-1 expression in leukemia cells results in decreased cell growth and increased apoptosis. The AML1-ETO-dependent differentiation block and transcriptional program are partially reversed by miR-29b-1. Our findings establish a novel regulatory circuit between the tumor-suppressive miR-29b-1 and the oncogenic AML1-ETO that controls the leukemic phenotype in t(8;21)-carrying acute myeloid leukemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geographic Heterogeneity of the AML1-ETO Fusion Gene in Iranian Patients with Acute Myeloid Leukemia

Background: The human AML1 gene, located on chromosome 21, can be fused to the AML1- eight-twenty-one (ETO) oncoprotein on chromosome eight, resulting in a t(8;21)(q22;q22) translocation. Acute myeloid leukemia (AML) associated with this translocation is considered a distinct AML with a favorable prognosis. Due to the various incidences of the translocation, which is associated with geographic ...

متن کامل

The Hematopoietic Transcription Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of the Apoptosis Program in t(8;21) AMLs.

The t(8;21) acute myeloid leukemia (AML)-associated oncoprotein AML1-ETO disrupts normal hematopoietic differentiation. Here, we have investigated its effects on the transcriptome and epigenome in t(8,21) patient cells. AML1-ETO binding was found at promoter regions of active genes with high levels of histone acetylation but also at distal elements characterized by low acetylation levels and bi...

متن کامل

The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia.

The transcription factor PU.1 plays a pivotal role in normal myeloid differentiation. PU.1(-/-) mice exhibit a complete block in myeloid differentiation. Heterozygous PU.1 mutations were reported in some patients with acute myeloid leukemia (AML), but not in AML with translocation t(8;21), which gives rise to the fusion gene AML1-ETO. Here we report a negative functional impact of AML1-ETO on t...

متن کامل

AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations.

The t(8;21) is one of the most frequent chromosomal abnormalities associated with acute myeloid leukemia (AML). The translocation, which involves the AML1 gene on chromosome 21 and the ETO gene on chromosome 8, generates an AML1-ETO fusion transcription factor. To examine the effect of the AML1-ETO fusion protein on leukemogenesis, we made transgenic mice in which expression of AML1-ETO is unde...

متن کامل

A novel epigenetic AML1‐ETO/THAP10/miR‐383 mini‐circuitry contributes to t(8;21) leukaemogenesis

DNA methylation patterns are frequently deregulated in t(8;21) acute myeloid leukaemia (AML), but little is known of the mechanisms by which specific gene sets become aberrantly methylated. Here, we found that the promoter DNA methylation signature of t(8;21)+ AML blasts differs from that of t(8;21)- AMLs. This study demonstrated that a novel hypermethylated zinc finger-containing protein, THAP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017